[vc_empty_space][vc_empty_space]
Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence
Chaerun S.K.a, Syarif R.a, Wattimena R.K.a
a Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, The Author(s).Concrete can be harmful to the environment due to its high energy consumption and CO2 emission and also has a potential crack formation, which can promote a drop in its strength. Therefore, concrete is considered as a non-sustainable material. The mechanisms by which bacterial oxidation of organic carbon can precipitate calcite that may fill the voids and cracks on cement-based materials have been extensively investigated to prevent and heal the micro-cracks formation. Hence, this study focused on utilizing a new alkaliphilic bacterial strain indigenous to an Indonesian site, Lysinibacillus sphaericus strain SKC/VA-1, incorporated with calcium lactate pentahydrate, as a low-cost calcium source, with various bacterial inoculum concentrations. The bacterium was employed in this study due to its ability to adapt to basic pH, thus improving the physical properties and rejuvenating the micro-cracks. Experimentally, the addition of calcium lactate pentahydrate slightly affected the mortar properties. Likewise, bacteria-incorporated mortar exhibited an enhancement in the physical properties of mortar. The highest improvement of mechanical properties (an increase of 45% and 36% for compressive and indirect tensile strength, respectively) was achieved by the addition of calcium lactate pentahydrate incorporated with 10% v/v bacterial inoculum [about 7 × 107 CFU/ml (colony-forming unit/ml)]. The self-healing took place more rapidly on bacterial mortar supplemented with calcium lactate pentahydrate than on the control specimen. XRD analysis demonstrated that the mineralogical composition of self-healing precipitates was primarily dominated by calcite (CaCO3), indicating the capacity of L. sphaericus strain SKC/VA-1 to precipitate calcite through organic carbon oxidation for self-healing the artificial crack on the mortar. To our knowledge, this is the first report on the potential utilization of the bacterium L. sphaericus incorporated with calcium lactate pentahydrate to increase the mortar properties, including its self-healing ability. However, further study with the water-cement ratio variation is required to investigate the possibility of using L. sphaericus and calcium lactate pentahydrate as an alternative method rather than reducing the water-cement ratio to enhance the mortar properties.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bacillaceae,Biomechanical Phenomena,Calcium,Calcium Carbonate,Calcium Compounds,Compressive Strength,Construction Materials,Indonesia,Lactates,Tensile Strength[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors acknowledge the Head of Geomechanics and Mine Equipment Laboratory, Institut Teknologi Bandung and Head of Mineralogy, Microscopy, and Geochemistry Laboratory, Institut Teknologi Bandung for providing the place and instruments for this research and the students and members of the Geomicrobiology, Biomining & Biocorrosion Laboratory and Microbial Culture Collection Laboratory, Biosciences and Biotechnology Research Center (BBRC), Institut Teknologi Bandung for their cooperation and assistance. This work was supported by a grant from the Han An Hua Foundation to SKC and was partially funded by the Indonesian Ministry of Research and Technology/National Agency for Research and Innovation, and Indonesian Ministry of Education and Culture, under World Class University Program managed by Institut Teknologi Bandung.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1038/s41598-020-74127-4[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]