[vc_empty_space][vc_empty_space]
Numerical Simulation of Wave Runup and Overtopping for Short and Long Waves Using Staggered Grid Variational Boussinesq
Adytia D.a, Pudjaprasetya S.R.b
a School of Computing, Telkom University, Bandung, 40257, Indonesia
b Industrial and Financial Mathematics Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© World Scientific Publishing Company.In designing a numerical tool for simulating a wide variety of water waves, i.e. short to long waves, an accurate and robust wave model and numerical implementation are needed. Dispersion and nonlinearity are the two most important physical aspects that should be modeled accurately. To be applicable to simulate many coastal engineering applications, the numerical scheme should be capable of simulating wave runup and overtopping. In this paper, we extend the capability of a Boussinesq-type model called Variational Boussinesq (VB) model for simulating the runup and overtopping of water waves. To that end, the vertical layer of the °uid is modeled continuously by a linear combination of three functions. If two of these three functions have been incorporated in the previous numerical approximation called the SVB model, this paper discusses the improvement of SVB model by incorporating all the three functions. This approach improve the dispersive property of the SVB model due to its ability to simulate short waves up to kd = 20, compared to the previous model which was only up to kd = 7, where k denotes wave number and d water depth. Furthermore, the model is implemented numerically by using the staggered conservative scheme. In the new implementation, the model is switched to the non-dispersive Shallow Water Equations (SWE) when dealing with a dry area for runup and overtopping phenomena. The new implementation is tested against analytical solutions of soliton propagation and standing wave phenomenon; moreover, it is also tested against experimental data from hydrodynamic laboratories for simulating solitary wave breaking above a sloping bottom, composite beach, and in a structure for simulating overtopping phenomenon. The implementation is also tested against experimental data for simulating irregular wave propagation and runup above a fringing reef. The results of numerical simulation agree quite well with experimental data.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Overtopping,Staggered grid,Variational boussinesq equations,Wave runup[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1142/S1793431120400059[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]