Enter your keyword

2-s2.0-85094682494

[vc_empty_space][vc_empty_space]

Hollow Zinc Oxide Microsphere-Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide

Septiani N.L.W.a, Saputro A.G.a, Kaneti Y.V.b, Maulana A.L.a, Fathurrahman F.a, Lim H.c, Yuliarto B.a, Nugrahaa, Dipojono H.K.a, Golberg D.b,d, Yamauchi Y.b,c,e

a Advanced Functional Materials Research Group, Institute of Technology Bandung, Bandung, 40132, Indonesia
b World Premier International (WPI), Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
c School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, 4072, Australia
d Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, 4000, Australia
e Department of Plant and Environmental New Resources, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2020 American Chemical Society.This work reports the first utilization of anthocyanin extracted from black rice (Oryza sativa L.) grains as a structure-directing agent for the synthesis of hollow zinc oxide (ZnO) spheres via a simple solvothermal reaction and their subsequent modifications with various amounts of multiwalled carbon nanotubes (MWCNTs). Following hybridization with MWCNTs, some MWCNTs are observed to penetrate into the inner cavities of the spheres, while ZnO nanoparticles are formed on the surface of some MWCNTs. When employed as a sulfur dioxide (SO2) sensor, the ZnO-MWCNT (15:1) composite displays a high response of 156 to 70 ppm of SO2 at an optimum temperature of 300 °C as well as good selectivity to SO2 with the response to 50 ppm of SO2 gas being 3 times higher than those to other gases, such as CO, CO2, methanol, toluene, hexane, and xylene. Interestingly, the sensing behavior of this composite is strongly influenced by the proportion of MWCNTs. Specifically, n-type sensing behavior is observed for both ZnO-MWCNT (10:1) and (15:1) composites, while p-type behavior is observed for the ZnO-MWCNT (5:1) composite. The switch in sensing behavior suggests the major contribution of p-type MWCNTs to the electronic and sensing properties of the ZnO/MWCNT composites. The density functional theory (DFT) simulations on the adsorption of SO2 on the ZnO/CNT system reveal that the SO2 molecule only chemically interacts with the O adatom of ZnO (i.e., oxygen atom adsorbed on the surface of ZnO) to form sulfur trioxide (SO3), and charge transfer is observed from ZnO to CNT, which enhances the change in resistance of the composite sensor upon exposure to SO2 gas.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Composite sensors,Multiwalled carbon nanotube (MWCNTs),Optimum temperature,Rice (Oryza sativa L.),Selective detection,Solvothermal reactions,Structure directing agents,Zinc oxide (ZnO)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]carbon nanotubes,gas sensing,nanocomposites,porous metal oxides,sulfur dioxide sensor,zinc oxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]D.G. is grateful to the Australian Research Council (ARC) for granting a Laureate Fellowship (FL160100089) and to QUT project Nos. 323000-0355/51 and 323000-0348/07. The authors also acknowledge financial grants provided by the Institut Teknologi Bandung (ITB, Indonesia), the Lembaga Pengelola Dana Pendidikan (LPDP), and the Ministry of Finance of Indonesia. This work is also partially supported by the Indonesia Ministry of Education and Culture and the Indonesia Ministry of Research and Technology under grant scheme of World Class University Program managed by Institut Teknologi Bandung. This work was performed in part at the Queensland node of the Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australian researchers. Y.Y. acknowledges the Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (17H04256).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1021/acsanm.0c01707[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]