[vc_empty_space][vc_empty_space]
Error and Uncertainty Analyses of Reference and Sample Reflectances Measured with Substitution Integrating Spheres
Mangkuto R.A.a, Revantinoa,b, Ajrina Z.a
a Building Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
b Center for Material and Technical Products, Ministry of Industry of the Republic of Indonesia, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Illuminating Engineering Society.The use of integrating sphere has been known as a method to measure hemispherical reflectance of a material sample. Mathematical expressions of such reflectance are available in literature, but most of them are not explicit in describing the relation between reflectance and the relevant input variables. This study aims to derive closed-form expressions for determining reference and sample reflectances, provided the irradiance values when the sample and the reference are measured using substitution integrating sphere. Moreover, this study also aims to determine the relative error in reflectance measurement when the fractional area of the ports is neglected, and to derive uncertainty expressions of reflectances due to uncertain irradiance values. The derived expressions have been verified with theoretical calculation tests comprising 10,000 random combinations of input variables. The proposed expressions, together with the error and uncertainty analyses, are expected to be applicable for low-cost, self-assembled integrating spheres.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Closed-form expression,Hemispherical reflectance,Input variables,Integrating spheres,Mathematical expressions,Random combination,Relative errors,Theoretical calculations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]error analysis,integrating sphere,irradiance,material sample,Reflectance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/15502724.2020.1831391[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]