Enter your keyword

2-s2.0-85096501366

[vc_empty_space][vc_empty_space]

Improved strength properties of LVL glued using PVAc adhesives with physical treatment-based Rubberwood (Hevea brasiliensis)

Sutrisnoa, Alamsyah E.M.a, Gumilar G.b, Tanaka T.c, Yamada M.c

a School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, 40132, Indonesia
b Alumni of Forestry Faculty, University of Winaya Mukti, Jatinangor Sumedang, Indonesia
c Faculty of Agriculture, Shizuoka University, Suruga-ku Shizuoka, 422-8529, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Sutrisno et al., published by De Gruyter 2020.The properties of the laminated veneer lumber (LVL) composed of the boiled veneer of Rubberwood (Hevea brasiliensis) using polyvinyl acetate (PVAc) adhesives in various cold-pressing time and various conditioned time with loaded and unloaded were studied. Five-ply LVL was produced by boiling veneer at 100°C for 90 min as pretreatment and cold-pressing time at 12 kgf cm-2 for 1.5, 6, 18, and 24 h then conditioned at 20°C and 65% relative humidity (RH) with loaded (12 kgf cm-2) and unloaded for 7 days as physical treatment. Especially for the delamination test, the specimens were immersed at 70 ± 3°C for 2 h and dried in the oven at 60 ± 3°C for 24 h; then, the specimens were solidified at room temperature (20°C and 65% RH) with loaded (12 kgf cm-2) and unloaded for 7, 10, 12, and 14 days. To determine the performance of LVL, the density, moisture content (MC), delamination, modulus of elasticity (MOE), modulus of rupture (MOR), horizontal shear strength, and formaldehyde emission tests were conducted according to the Japanese Agricultural Standard (JAS 2008) for structural LVL. The MOE and MOR values were significantly influenced by the physical treatment, however, neither to horizontal shear strength nor to formaldehyde emission. The best performance of LVL has resulted from unloaded LVL with cold-pressed time for 18 h; the MOE and MOR values were 9,345.05 ± 141.61 N mm-2 and 80.67 ± 1.77 N mm-2, respectively. The best value of the horizontal shear strength was obtained from the LVL with 18 h cold-pressing time and conditioned with loaded (13.10 ± 1.47 N mm-2) and unloaded (12.23 ± 1.36 N mm-2). The percentage of delamination values decreased with an increase in the cold-pressing time and conditioning time. The lowest value of delamination (19.06%) was obtained from the LVL with 24 h cold-pressing time and conditioned with loaded for 14 days. Except the delamination test, all other properties fulfilled the JAS.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]boiled veneer,cold-pressing,LVL,PVAc,Rubberwood[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to be grateful to the Head of Institute for Research and Community Services Institut Teknologi Bandung for the financial support of this research through the International Research Collaboration Program between the School of Life Sciences and Technology, Institut Teknologi Bandung, and Graduate School of Agriculture, Shizuoka University, year 2017.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1515/opag-2020-0072[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]