[vc_empty_space][vc_empty_space]
Deep learning-based complaint classification for indonesia telecommunication company’s call center
Lukitasari S.D.a, Hidayat F.a
a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 EAI.The preliminary research was held to utilize the call center conversations records from a broadband telecommunications company in Indonesia. There is a need from the company to classify customer’s complaints automatically by a system to minimize human errors and at once streamline the business processes and resources. Natural Language Processing (NLP), as an integral part of artificial intelligence (AI), empower machines to understand human languages for performing beneficial tasks. The growth of deep learning is the main driver behind NLP for performing various practical applications and business, therefore deep learning is expected to overcome the problems encountered. This paper explains the methods used in designing the classification systems based on deep learning. A literature review is conducted to find the proper algorithm used in classifying problems. Furthermore, it also explains the stages performed in preparing the data and building the system model. From experiments conducted, it can be stated that the RNN algorithm can be used in the classification of customer complaints with the results shown by the accuracy value of the model.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Broadband telecommunication,Business Process,Classification system,Customer complaints,Literature reviews,NAtural language processing,System modeling,Telecommunication companies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Call center,Classification,Complaint,Deep learning,Intent,RNN[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgments. This research is supported by the Division of Digital Service (DDS) of PT. Telekomunikasi Indonesia, Tbk.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4108/eai.12-10-2019.2296518[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]