[vc_empty_space][vc_empty_space]
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.The challenge of deploying orthogonal frequency division multiplexing (OFDM) for high-speed railways (HSRs) is associated with its high mobility and delay spread. These two conditions introduce loss of orthogonality between the OFDM subcarriers, hence, degrades the system performance. Although OFDM can provide high spectrum efficiency, but due to its inherited rectangular pulse shape, the frequency spectrum produced is not very well localized, which blocks its coexistence with other systems in adjacent carriers. Compared to the conventional OFDM, filtered OFDM (f-OFDM) has a lower out-of-band (OOB) interference and spectrum leakage. Therefore, f-OFDM is attractive to be implemented in high mobility applications such as in HSR, as considered here. By using the Hann and root-raised cosine (RRC) filters, simulation results show that f-OFDM provides better bit error rate (BER) and reduced OOB emission compare to conventional OFDM.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Frequency spectra,High – speed railways,High mobility,Orthogonality,Rectangular pulse,Root raised cosine filter,Spectrum efficiency,Spectrum leakage[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]5G new waveform,asynchronous transmission,long-term evolution (LTE),out of band (OOB) emission,Rayleigh fading[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICWT50448.2020.9243655[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]