[vc_empty_space][vc_empty_space]
A novel utilization of ferronickel slag as a source of magnesium metal and ferroalloy production
Zulhan Z.a, Agustina N.a
a Metallurgical Engineering Department, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier LtdProcessing laterite nickel ore by the pyrometallurgical route produces ferronickel slag as a byproduct. The main constituents of ferronickel slag are silicon oxide, magnesium oxide, and iron oxide. The amount of ferronickel slag has sharply increased in recent years as a result of the increasing demand for ferronickel and stainless steel. Some regions recognize ferronickel slag as hazardous waste, meaning that the handling of the slag requires special attention and treatment. A zero-waste ferronickel processing plant could be realized if most of the metallic components can be extracted from the slag. Based on FactSage calculations, it is thermodynamically possible to reduce ferronickel slag into magnesium and ferroalloy, leaving only a small amount of unreduced oxides. According to experiments conducted at 1500 °C and 1550 °C under an argon atmosphere and a vacuum environment, magnesium was evaporated and ferro-silicon-chromium was formed. Some magnesium cannot be evaporated and remains in the final slag together with silicon in the form of forsterite (Mg2SiO4). Further research is still needed to increase the degree of magnesium metal evaporation and to prevent reoxidation of magnesium metal by carbon monoxide and silicon oxide gases.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Argon atmospheres,Hazardous wastes,Laterite nickel ores,Magnesium metal,Metallic component,Processing plants,Re-oxidation,Vacuum environment[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carbothermic,Ferroalloy,Ferronickel slag,Inert,Magnesium,Vacuum[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank PT Antam and ITB for supporting this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.jclepro.2020.125307[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]