[vc_empty_space][vc_empty_space]
Optimization of Virtual Inertia Control Considering System Frequency Protection Scheme
Kerdphol T.a, Rahman F.S.b, Watanabe M.a, Mitani Y.a
a Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2021, Springer Nature Switzerland AG.To maintain frequency stability of power system subject to large contingency resulting in large generation-load imbalance, the frequency protection scheme such as underfrequency load shedding (UFLS) scheme is usually applied in the power system. However, with the high penetration of renewable generation, the system inertia will significantly decrease. Moreover, due to the variable nature of RESs, the system inertia will also vary depending on the actual RESs penetration. Therefore, in this condition, the existing frequency protection scheme might be insufficient to protect the system in the case of large contingency. While the reconfiguration of the frequency protection scheme could solve this issue, it is not practical from the system operation point-of-view to always modify its setting following the penetration level of RESs. In this chapter, a new method to select proper virtual inertia constant by considering the system frequency protection scheme is presented. The particle swarm optimization (PSO), a well-known optimization technique, is implemented for obtaining proper virtual inertia constant. Using the proposed method, optimal virtual inertia support could be achieved for different system inertia conditions without the necessity to reconfigure the existing frequency protection scheme.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Frequency control,Frequency protection scheme,Optimization,Particle swarm optimization (PSO),Underfrequency load shedding (UFLS),Virtual inertia constant,Virtual inertia control[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-030-57961-6_9[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]