Enter your keyword

2-s2.0-85097032027

[vc_empty_space][vc_empty_space]

Virtual Inertia Synthesis for a Single-Area Power System

Kerdphol T.a, Rahman F.S.b, Watanabe M.a, Mitani Y.a

a Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2021, Springer Nature Switzerland AG.The inertia property is one of the most critical aspects to maintain the frequency stability in a single (islanded) power system. Therefore, this chapter explains the dynamic performance and frequency characteristics of a single-area system with the deployment of virtual inertia control in addition to the primary and secondary control loops. The linearized frequency response model for virtual inertia, primary, and secondary controls is presented by using the state-space representation (i.e., mathematical model of a physical system). Dynamic and static performances of the virtual inertia response model are explained in terms of small-signal (dynamic) and state-space analysis. The effects of various parameters over inertia control-based frequency response are emphasized. A dynamic model of virtual inertia control is verified by a well-tested classical load-frequency control model in the varying operating conditions of the power system. Moreover, some experimental studies with a practical virtual inertia control in the laboratory environment are also demonstrated.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dynamic performance,Frequency control loops,Frequency deviation,Frequency response,Linearized model,Primary frequency control,Secondary frequency control,State-space model,Time delay,Virtual inertia control,Virtual inertia power[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-030-57961-6_3[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]