[vc_empty_space][vc_empty_space]
The Influence of Shear Angles on the Split Hopkinson Shear Bar Testing
Budiwantoro B.a, Kariem M.A.a, Febrinawarta B.a
a Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020Dynamic material characterization is one of important factors in the development of modern transportation industry to overcome two main challenges, i.e. lightweight and crashworthy vehicles. The most commonly used apparatus to characterize the material in high strain rates is the Hopkinson bar. The Hopkinson bar can be conducted into several loading conditions such as compression, tension, shear, torsion and multiaxial. This paper focuses on the split Hopkinson shear bar testing, especially on the effect of the shear angles on generating the shear stress – shear strain curves, shear strain rates, and final shear strains. Four geometries of specimen were studied, i.e. circular hat-shaped (CHS), flat hat-shaped (FHS), punch (P) and double-notch (DN). This research is conducted with three main considerations, i.e. the same kinetic energy (7.34 Joule), the same shear area (±25 mm2), and the shear angles were varied as ±2.5°, 5°, 7.5°, 10° and 15°. This study shows that each testing has its own advantages and disadvantages and they generate different strain rate, strain rate gradient, final strain, and shear stress – shear strain relations which is not desirable. In term of shear angles, authors recommend using a shear angle of appoximately 5°. This shear angle generates the best purity on the shear loading among other shear angles and also the flow stress variation (among four tests) are quite acceptable ±16.4%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dynamic materials,High strain rates,Loading condition,Shear loadings,Split-Hopkinson,Strain rate gradients,Stress variations,Transportation industry[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Double-notch,Hat-shaped,High strain rates,Impact test,Johnson-Cook model,Punch,Split Hopkinson Shear Bar[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was carried out at the Engineering Design Laboratory, Mechanical Engineering Department, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung and was financially supported by Institut Teknologi Bandung through P3MI (Program Penelitian Pengabdian Masyarakat dan Inovasi).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijimpeng.2020.103787[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]