[vc_empty_space][vc_empty_space]
Measuring memetic algorithm performance on image fingerprints dataset
Assiroj P., Warnars H.L.H.S., Abdurrachman E., Kistijantoro A.I.b, Doucet A.c
a Computer Science Department Binus Graduate Program, Bina Nusantara University, Information System Department, Universitas Buana Perjuangan Karawang, Politeknik Imigrasi, Ministry of Law and Human Right, Jakarta, Indonesia
b School of Electronics Engineering and Informatics, Institut Teknologi Bandung, Indonesia
c L3i Laboratory, La Rochelle University, France
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020. All Rights Reserved.Personal identification has become one of the most important terms in our society regarding access control, crime and forensic identification, banking and also computer system. The fingerprint is the most used biometric feature caused by its unique, universality and stability. The fingerprint is widely used as a security feature for forensic recognition, building access, automatic teller machine (ATM) authentication or payment. Fingerprint recognition could be grouped in two various forms, verification and identification. Verification compares one on one fingerprint data. Identification is matching input fingerprint with data that saved in the database. In this paper, we measure the performance of the memetic algorithm to process the image fingerprints dataset. Before we run this algorithm, we divide our fingerprints into four groups according to its characteristics and make 15 specimens of data, do four partial tests and at the last of work we measure all computation time.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biometrics,Fingerprints,Image,Memetic algorithm,Performance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is supported by Research and Technology Transfer Office, Bina Nusantara University as a part of Bina Nusantara University’s International Research Grant entitled MEMETIC ALGORITHM IN HIGH-PERFORMANCE COMPUTATION with contract number: No.026/VR.RTT/IV/2020 and contract date: 6 April 2020.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.12928/TELKOMNIKA.V19I1.16418[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]