Enter your keyword

2-s2.0-85098332139

[vc_empty_space][vc_empty_space]

The North Sulawesi Seas Water Masses Heat Content in 1995 – 2015

Ramadhan F.L.a, Chairuasni L.N.a, Bernawis L.I.a, Rachmayani R.a, Putri M.R.a

a Department of Earth Sciences, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.The North Sulawesi Seas is the entrance gate of Indonesian Throughflow (ITF) which will be directly affected by the phenomenon occurring in the Pacific Ocean especially a El-Nino Southern Oscillation (ENSO). This study aims to determine the heat content of the water mass in the North Sulawesi Seas as part of ITF. Main data is a temperature data derived from the HYbrid Coordinate Ocean Model (HYCOM) reanalysis model with a resolution of 1/12°. In the North Sulawesi Seas found five types of a water masses its North Pacific Subtropical Water (NPSW), North Pacific Equatorial Water (NPEW), North Pacific Intermediate Water (NPIW), Antarctic Intermediate Water (AAIW), and Antarctic Bottom Water (AABW). The water mass heat content is calculated with the two different temperature systems for depth. Magnitudes for each heat content of water types calculated in this study for NPSW, NPEW, NPIW, AAIW, and AABW are in the range of 5,67 × 1013 J/m2 – 1,04 × 1015 J/m2, 22,62 × 1015 J/m2 – 8,26 × 1015 J/m2, 1,08 × 1015 J/m2 – 9,38 × 1015 J/m2, 2,17 × 1016 J/m2 – 3,33 × 1016 J/m2, and 8,11 × 1015 J/m2 – 1,89 × 1016 J/m2, respectively. The water mass heat content in the mixed and deep layer will decrease (increase) when the La-Nina (El-Nino), while in the thermocline layer will decrease (increase) when the El-Nino (La-Nina) phenomenon.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Antarctic Bottom Water,Antarctic intermediate waters,El Nino southern oscillation,Hybrid coordinate ocean models,Indonesian throughflow,Subtropical water,Temperature data,Temperature system[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]and ENSO,Heat content,Indonesian Throughflow,North Sulawesi Seas,Water mass[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research fully funded from Ministry of Research, Technology, and Higher Education, Republic of Indonesia by PDUPT scheme.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/618/1/012015[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]