Enter your keyword

2-s2.0-85098697691

[vc_empty_space][vc_empty_space]

Characterization of DC Artificial Network Using Analytical Method for Conducted Emission Measurement of Photovoltaic Inverter

Yudhistira, Hamdani D., Bambang Anggoro S.P.

a School of Informatics and Electrical Engineering-ITB, Research Center for Testing Technology-LIPI, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.Artificial Network used to measure conducted emission noise on the DC side due to the use of photovoltaic inverters (DC-AN) has been characterized based on impedance and insertion loss using analytical method. Impedance and insertion loss compatibility requirements are regulated by CISPR standard 16-1-2:2014 to provide matching impedance with DC source and Equipment Under Test (EUT) in the radio frequency range from 150 kHz to 30 MHz. Circuit analysis using node analysis and loop analysis in the form of Laplace Transform is used to obtain the frequency response equations of impedance and insertion loss. Furthermore, the verification of the analytical method results is done by comparing it with the simulation method and the proposed DC-AN design based on analytical method has been made to validate DC-AN characteristic required by the standard. Finally, it could be concluded that the characteristics of DC-AN with analytical method are very close to the results of simulation method and the characteristic of the proposed DC-AN design is still within the tolerance limits allowed by the standard, which is ± 20% of the required impedance exact value and it has an insertion loss around of below-40 dB so it could be used to measure conducted emission noise.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytical method,Artificial networks,Conducted emissions,Equipment under tests,Frequency response equations,Photovoltaic inverters,Radio frequency range,Tolerance limits[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]artificial network,conducted emission,impedance,insertion loss,PV inverter[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICITEE49829.2020.9271775[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]