Enter your keyword

2-s2.0-85099356269

[vc_empty_space][vc_empty_space]

Linear Continuous Sliding Mode-based Attitude Controller with Modified Rodrigues Parameters Feedback

Septanto H.a,b, Suprijanto D.c

a National Institute of Aeronautics and Space (LAPAN), Satellite Technology Center, Bogor, Indonesia
b Ministry of Research and Technology, National Agency for Research and Innovation (BRIN), Jakarta, Indonesia
c Institute of Technology Bandung, Faculty of Mathematics and Natural Sciences, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.This paper studies an attitude control system design based on modified Rodrigues parameters feedback. It employs a linear continuous sliding mode controller. The sliding mode controller is able to bring the existence of the sliding motion asymptotically. Besides, The attitude control system equilibrium point is proved to have an asymptotic stability guarantee through further analysis. This stability analysis is conducted since the sliding mode existence on the designed sliding surface does not imply the stability guarantee of the system’s equilibrium. This paper ends with some numerical examples that confirm the effectiveness of the designed attitude control system.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Attitude controller,Continuous sliding modes,Modified rodrigues parameter,Sliding mode controller,Sliding modes,Sliding motions,Sliding surface,Stability analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]asymptotic stability guarantee,attitude control,linear continuous sliding mode,modified Rodrigues parameters[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENTS This research is supported by the Ministry of Research and Technology/ National Agency for Research and Innovation (BRIN), Jakarta, Republic of Indonesia. The authors also acknowledge the Satellite Technology Center, National Institute of Aeronautics and Space (LAPAN) for providing the research facilities. HS is the main contributor of this paper with detail contributions as follows: HS – idea, proof derivation, simulation, discussion, paper preparation; DS – discussion, reviewing, editing.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICRAMET51080.2020.9298661[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]