Enter your keyword

2-s2.0-85099592170

[vc_empty_space][vc_empty_space]

Development of smart greenhouse system for hydroponic agriculture

Andrianto H.a, Suhardia, Faizal A.a

a Institut Teknologi Bandung, School of Electrical Engineering and Informatics, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.Food availability is a very important problem to be resolved due to the growing world population. The problem faced is how to increase agricultural production. In addition, how to reduce the use of pesticides so that they are not harmful to humans. One solution to overcome this problem is to create a smart greenhouse system. Farming in this smart greenhouse system does not use pesticides. This study aims to develop smart greenhouses for hydroponic farming based on the Internet of Thing (IoT). In this study, we also measured the chlorophyll content of mustard leaves grown hydroponically in a greenhouse system to determine the nitrogen status of the mustard plant. The controller unit of this system is the Arduino Mega2560. Data on temperature, humidity, TDS, PH, light, and actuator conditions (pumps, lights, fans, sprayers, and valves) are stored on the real-time database firebase. Data communication between the Arduino Mega2560 and the Firebase platform uses an internet connection via the ESP-01 module. The results showed that all components such as sensors and actuators were functioning properly. Environmental conditions in the greenhouse can be monitored via an application on a smartphone and all actuators can be controlled via an application on a smartphone.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Agricultural productions,Chlorophyll contents,Data-communication,Environmental conditions,Internet connection,Internet of thing (IOT),Real-time database,Sensors and actuators[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Greenhouse,Hydroponic,Internet of things[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGEMENT Authors would like to express gratitude to Institut Teknologi Bandung for the financial support that has been provided. Thanks also to Universitas Kristen Maranatha for funding scholarships.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICITSI50517.2020.9264917[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]