Enter your keyword

2-s2.0-85100233645

[vc_empty_space][vc_empty_space]

Simulation of modular exponentiation circuit for shor’s algorithm in qiskit

Larasati H.T.a,b, Kim H.a

a Pusan National University, South Korea
b Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.This paper discusses and demonstrates the construction of a quantum modular exponentiation circuit in the Qiskit simulator for use in Shor’s Algorithm for integer factorization problem (IFP), which is deemed to be able to crack RSA cryptosystems when a large-qubit quantum computer exists. We base our implementation on Vedral, Barenco, and Ekert (VBE) proposal of quantum modular exponentiation, one of the firsts to explicitly provide the aforementioned circuit. Furthermore, we present an example simulation of how to construct a 7xmod 15 circuit in a step-by-step manner, giving clear and detailed information and consideration that currently not provided in the existing literature, and present the whole circuit for use in Shor’s Algorithm. Our present simulation shows that the 4-bit VBE quantum modular exponentiation circuit can be constructed, simulated, and measured in Qiskit, while the Shor’s Algorithm incorporating this VBE approach itself can be constructed but not yet simulated due to an overly large number of QASM instructions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Integer factorization problem,Modular Exponentiation,Quantum modular exponentiation,RSA cryptosystems,Shor’s algorithms[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Qiskit,Quantum circuit,Quantum computing,Quantum modular exponentiation circuit[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This work was supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-00033, Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexity).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA51342.2020.9310794[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]