Enter your keyword

2-s2.0-85100496020

[vc_empty_space][vc_empty_space]

Compact Dipole Antenna Based on Meander Line Structure for Unmanned Aerial Vehicle Application

Rahardi R.a, Rizqi M.a, Lukito W.D.a, Hilmi M.a, Virginio R.a, Munir A.a

a Institut Teknologi Bandung, School of Electrical Eng. Informatics, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.In this paper, the development of a compact dipole antenna which operates at the 433 MHz Industrial, Scientific, and Medical (ISM) band for Unmanned Aerial Vehicle (UAV) application is presented. The proposed antenna which is intended to work at the center frequency of 433 MHz utilizes a meander line technique to acquire a compact design of antenna. An FR-4 epoxy dielectric substrate with the thickness of 1.6 mm is used to deploy the proposed antenna which takes the dimension of 232.5 mm by 16.4 mm. Prior to fabrication, the antenna design is characterized using a simulation software. The characterization results show that the antenna design has the return loss of -17.19 dB, the gain of 1.82 dBi, and the working bandwidth of 30 MHz in the frequency range of 419 MHz to 449 MHz. In addition to the simulation, the proposed antenna is fabricated and experimentally characterized. The measurement results show that the fabricated antenna has the return loss of -20.17 dB, the gain of 0.79 dBi, and the working bandwidth of 33 MHz in the frequency range of 417 MHz to 450 MHz. Furthermore, through the simulation and measurement, the proposed antenna exhibits an omnidirectional radiation pattern.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Center frequency,Compact designs,Dielectric substrates,Frequency ranges,Meander line structure,Omnidirectional radiation pattern,Simulation software,Simulations and measurements[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]and Medical (ISM) band,compact dipole antenna,Industrial,meander line structure,Scientific,Unmanned Aerial Vehicle (UAV) application[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Aksantara, Institut Teknologi Bandung, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/Comnetsat50391.2020.9328993[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]