Enter your keyword

2-s2.0-85100510124

[vc_empty_space][vc_empty_space]

AMC-based Dual-Band Wearable Reflector and Its Characterization with Dipole Antenna

Haryanto D.a, Nur L.O.a, Munir A.b

a Telkom University, Telecommunication Engineering School of Electrical Engineering, Bandung, Indonesia
b Institut Teknologi Bandung, Radio Telecomm. Microwave Lab., School of Electrical Eng. Informatics, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.In this paper, the design of dual-band wearable reflector based on Artificial Magnetic Conductor (AMC) structure is presented for Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) applications. The AMC structure used to construct the dual-band wearable reflector is configured by a 3×3 unit cell whereby each unit is the combination of a rectangular patch and an L-patch with a gap. Meanwhile, to characterize the property of dual-band wearable reflector, a printed dipole antenna with slots is applied in varied distances to the reflector. The configuration of AMC-based dual-band reflector and printed dipole antenna which is designed on a 0.5mm thick Rogers RO3003 dielectric substrate is expected to produce two different resonant frequencies to cover the desired frequency bands while maintaining its small size and simple structure. Parametric studies are conducted upon the physical parameters of the dual-band wearable reflector and the printed dipole antenna to obtain an optimum design of the configuration. The characterization results show that the proposed configurations are operable at two frequency bands, i.e., 2.45GHz and 3.35GHz, suitable for WLAN and WiMAX applications, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial magnetic conductors,Dielectric substrates,Optimum designs,Parametric study,Physical parameters,Printed dipole antennas,Rectangular patch,Simple structures[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial Magnetic Conductor (AMC),dipole antenna,rectangular patch,slot,wearable reflector[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the National Strategy Institution Research Program, the Ministry of Research and Technology/National Research and Innovation Agency, the Republic of Indonesia, contract No. 25/E1/KPT/2020 and No. 042/PNLT2/PPM/2020.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/Comnetsat50391.2020.9328997[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]