Enter your keyword

2-s2.0-85100762901

[vc_empty_space][vc_empty_space]

Narrowband BPF Made of Waveguide Loaded by SRR-based Frequency Selective Surfaces

Nusantara H.a, Putri R.A.R.Q.Y.a, Mistialustina H.a, Munir A.a

a Institut Teknologi Bandung, Telematics Laboratory, School of Electrical Engineering and Informatics, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.This paper deals with the development of narrowband bandpass filter (BPF) made of a waveguide loaded by split ring resonator (SRR) based frequency selective surfaces (FSS). The structure of FSS loaded into the waveguide is developed by two layers of Arlon DiClad 527 dielectric substrate flank some structures of SRR. Two different configurations of SRR-based FSS structure, i.e. one SRR and two SRRs, are involved in the design of narrowband waveguide BPF and analyzed in terms of working bandwidth, return loss, and transmission loss. The results show that the waveguide BPF with two SRRs has a wider working bandwidth and better performance compared to the other with one SRR. The realized narrowband waveguide BPF with two SRRs has the working bandwidth of 240MHz in the frequency range of 7.32GHz to 7.56GHz which has good agreement with the simulation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dielectric substrates,Frequency ranges,Frequency selective surface (FSS),Narrow bands,Narrowband band-pass filters,Return loss,Split-ring resonators (SRR),Transmission loss[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bandpass filter (BPF),frequency selective surfaces (FSS),narrowband,split ring resonator (SRR),waveguide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/APMC47863.2020.9331627[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]