Enter your keyword

2-s2.0-85100887018

[vc_empty_space][vc_empty_space]

Numerical modeling of tidal current patterns using 3-dimensional mohid in Balikpapan Bay, Indonesia

Hermansyah H.a, Ningsih N.S.b, Nabilc, Tarya A.b, Syahruddina

a Balikpapan State Polytechnic, Indonesia
b Oceanography Departement, Institut Teknologi Bandung, Indonesia
c Laboratory of Processing Data, IPB University, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Universitas Airlangga.Balikpapan Bay is significant as a link between the cities within and outside of East Kalimantan by becoming the primary path used for local transportation and distribution of produced goods. The various anthropogenic activities increased liquid wastes and debris, which flowed through channels and rivers along the bay. This study aimed to determine tidal current patterns in Balikpapan Bay and its influence on salinity and temperature distributions. This study applied a baroclinic three-dimensional (3D) hydrodynamic model, employing wind, tides, and density variations, resulting from the differences of temperature and salinity, as the model input. To simulate the tidal current flow, we applied MOHID Water Modeling System, which the tidal current patterns depicted current directions and speeds at the different tidal conditions. During the displacement toward the high tidal condition, the water mass moves northwestward entering the river body, while at the displacement toward the low tidal condition, the water mass moves southeast-ward, which flows toward the coast and without the bay. The current speed varies at certain tidal conditions. At the highest tidal condition, the surface elevation ranged 1.3-1.5 m above mean sea level; the current rate is lower compared to the displacement toward high tidal condition, which ranged from 0.01-0.15 m/s. At the lowest tidal condition, the surface elevation reached 1-1.2 m below mean sea level, and the weaker flow velocity took place (less than 0.15 m/s). The results also showed that the water mass temperature tends to be higher in the inner part of Balikpapan Bay, the Balikpapan Bay waters profile that is increasingly shallow towards the bay head also causes this area to tend to have a higher temperature. Also, areas located on the inside of the bay tend to get more freshwater input from rivers, so this area has lower salinity while the area located at the mouth of the bay tends to be of higher salinity because it gets a lot of mass input of seawater from the Makassar Strait.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Balikpapan Bay,MOHID hydrodynamics model,Numerical simulation,Tidal current[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was partially funded by the General Directorate of Research and Development, Ministry of Research, Technology & Higher Education during 2019-2020 with grant number of 134/SP2H/LT/DRPM/2019.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.20473/jipk.v12i1.16257[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]