Enter your keyword

2-s2.0-85034039596

[vc_empty_space][vc_empty_space]

Experimental approach of quality enhancement for image acquisition of ground penetrating radar

Munir A.a, Intyas I.a, Muhaimin H.a, Suksmono A.B.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.Due to the time consumption required to perform data acquisition, sometimes the image quality of scanning process for ground penetrating radar (GPR) needs to be sacrificed to obtain the result. Hence, the image becomes low-quality for further processing. In this paper, an experimental approach is performed to enhance the image quality for GPR acquisition. A model of M16 riffle model is used as the object of investigation which is buried in the GPR test range at the depth of around 350mm under the sand surface. The scanning process is then run out to obtain the data of buried object. The experimental data is processed into A-scan, B-scan, and C-scan. Image interpolation is performed to the C-scan image by using 3 different methods, i.e. nearest neighbor method, linear method, and cubical method. The peak signal-to-noise ratio (PSNR) of interpolated image from each method is analyzed. It shows that the linear interpolation method gives the highest PSNR, i.e. 50.73dB, over other methods, i.e. 48.15dB and 49.19dB for nearest neighbor and cubical interpolation methods, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Experimental approaches,Ground Penetrating Radar,Ground penetrating radar (GPR),Image interpolations,Linear Interpolation,Nearest neighbors,Peak signal to noise ratio,PSNR[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cubical interpolation,GPR,image interpolation,linear interpolation,nearest neighbor,PSNR[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the research incentive program of national innovation system (Insentif Riset SINas) with the contract No. 0821j/I1.C07.2/PL/2016 from the Ministry of Research, Technology, and Higher Education, The Republik of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ELECSYM.2016.7861005[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]