Enter your keyword

2-s2.0-85082000149

[vc_empty_space][vc_empty_space]

Performance Analysis of Power Weighted Linear Array Antennas Based on Blackman Function

Mistialustina H.a, Chairunnisab, Munir A.a

a Faculty of Engineering Universitas Sangga Buana, Department of Electrical Engineering, Indonesia
b Radio Telecommunication and Microwave, Laboratory School of Electrical Engineering and Informatics Institut Teknologi, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Nowadays, power weighted methods have been widely implemented for array antennas to optimize weighting coefficients using specific techniques. This paper deals with the performance analysis of power weighted linear array antennas based on Blackman function. Several attempts by varying number of array elements and inter element spacing are conducted for the linear array antennas working at the X-band frequency of 9.5 GHz. The use of Blackman function enhances the sidelobe level (SLL) of linear array antennas for variation of array elements number with constant inter element spacing. While for variation of inter element spacing with constant array elements number, Blackman function improves the width of mainlobe (WML) of linear array antennas. As comparison, Chebyshev and Kaiser functions are also employed for analyzing the performance of linear array antennas. The result shows that Blackman function has similar achievement to Chebyshev function for 8 radiator elements with predefined SLL of 68.8 dB and inter element spacing of \lambda/1.5 but with enhanced WML useful for broadside array antennas application. Furthermore, the use of Blackman function has also yielded better performance in SLL than Kaiser function with predefined SLL of 68.8 dB and \beta of 6.623.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Broadside arrays,Chebyshev functions,Inter-element spacing,Linear array antennas,Performance analysis,Radiator elements,Weighting coefficient,X-band frequencies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Indonesia Endowment Fund for Education (Lembaga Pen-gelola Dana Pendidikan, LPDP-BUDI DN) from the Ministry of Finance, and by the Ministry of Research, Technology, and Higher Education, The Republic of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/PIERS-Spring46901.2019.9017764[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]