Enter your keyword

2-s2.0-84961734078

[vc_empty_space][vc_empty_space]

Implementation of image-based autopilot controller using command filtered backstepping for fixed wing unmanned aerial vehicle

Farras A.W.a, Trilaksono B.R.a, Putra F.R.a

a Electrical Engineering Department, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, West Java, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.A visual based autopilot for a fixed-wing unmanned aerial vehicle (UAV) is one of the powerful method to track a target object on sea or ground level using an image based visual servoing control. A feature of target object must always appear on image plane of camera to that by controlling pan-tilt gimbal movement. Aircraft attitude and pan-tilt gimbal can be used as a reference to drive the aircraft to track the target autonomously. In this paper, the aircraft attitude and pan-tilt gimbal movement are controlled using command filtered backstepping method that is designed to adapt nonlinear aircraft dynamics and the camera gimbal image based visual servoing. Implementation of such a visual based autopilot is successfully conducted to govern the pan-tilt gimbal for pointing the camera direction and to drive the aircraft motion to track the target object.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aircraft motion,Autopilot controller,Back-stepping method,Camera direction,Ground level,Image based visual servoing,Nonlinear aircraft dynamics,Target object[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Control system,Unmanned Aerial Vehicle (UAV),Visual Servoing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2015.7352503[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]