[vc_empty_space][vc_empty_space]
A dynamical model of full bridge LLC resonant converter which incorporates power loss coefficients for controller design
Rijanto E.a, Nugroho A.a, Dahono P.A.b
a Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (LIPI) Kampus LIPI Jalan Sangkuriang, Bandung, Indonesia
b School of Electrical Engineering and Informatics, Institute of Technology Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.DC-DC converters play important role in smart grids and electric vehicles. A practical model is needed for effective controller design of full bride LLC resonant converter, a topology of DC-DC converter. This paper proposes a new practical model of full bridge LLC resonant converter which incorporates power loss coefficients. Power losses due to MOSFET on-resistance, equivalent serial resistance (ESR), and voltage drop of diode are expressed using power loss coefficients. A practical linear model in state space equation is obtained using Jacobian matrices. A physical model inSimulink/Simscape Electrical®environment is builtbased on a prototype of LLC converter which has nominal input voltage of 120 V, nominal output voltage of 240 V, and nominal switching frequency of 100 kHz. In order to validate the proposed practical model, transient responses comparison between the practical linear model and the physical model was carried out through computer simulation. From the simulation results, it can be concluded that the proposed practical linear model represents well dynamics of the physical model. Therefore, the proposed practical linear model can be used for controller design in an effective manner based on analytical approach.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytical approach,Controller designs,Equivalent serial resistances,Full bridge,LLC resonant converter,Physical modelling,Resonant converters,State space equation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]full bridge,LLC,physical modelling,resonant converter[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported in part by the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia through Insinas scheme 2017.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEEA.2018.8627092[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]