[vc_empty_space][vc_empty_space]
Enhancing bifunctional catalytic activity of cobalt-nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc-air batteries
Xu Y.a, Sumboja A.c, Groves A.a, Ashton T.a, Zong Y., Darr J.A.a
a Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
b Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
c Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 The Royal Society of Chemistry.Developing large-scale and high-performance OER (oxygen evolution reaction) and ORR (oxygen reduction reaction) catalysts have been a challenge for commercializing secondary zinc-air batteries. In this work, transition metal-doped cobalt-nickel sulfide spinels are directly produced via a continuous hydrothermal flow synthesis (CHFS) approach. The nanosized cobalt-nickel sulfides are doped with Ag, Fe, Mn, Cr, V, and Ti and evaluated as bifunctional OER and ORR catalyst for Zn-air battery application. Among the doped spinel catalysts, Mn-doped cobalt-nickel sulfides (Ni1.29Co1.49Mn0.22S4) exhibit the most promising OER and ORR performance, showing an ORR onset potential of 0.9 V vs. RHE and an OER overpotential of 348 mV measured at 10 mA cm-2, which is attributed to their high surface area, electronic structure of the dopant species, and the synergistic coupling of the dopant species with the active host cations. The dopant ions primarily alter the host cation composition, with the Mn(iii) cation linked to the introduction of active sites by its favourable electronic structure. A power density of 75 mW cm-2 is achieved at a current density of 140 mA cm-2 for the zinc-air battery using the manganese-doped catalyst, a 12% improvement over the undoped cobalt-nickel sulfide and superior to that of the battery with a commercial RuO2 catalyst.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Battery applications,Cation composition,Continuous hydrothermal flow synthesis,High surface area,ITS applications,Onset potential,Power densities,Transition metal doping[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘The authors wish to thank the Engineering and Physical Sciences Research Council (EPRSC) for funding the Centre for Doctoral Training in Molecular Modelling & Materials Science (CDT, UCL, UK; EPSRC reference EP/L015862/1). The CDT and A*STAR (Singapore NUS) are thanked for studentship support for Y. X. The authors thank the EPSRC for funding The JUICED Hub (Joint University Industry Consortium for Energy (Materials) and Devices Hub, EP/R023662/1). The authors also acknowledge the \ue103nancial support from Research, Community Service and Innovation Program (P3MI) Institut Teknologi Bandung, grant 2020.’}, {‘$’: ‘The authors wish to thank the Engineering and Physical Sciences Research Council (EPRSC) for funding the Centre for Doctoral Training in Molecular Modelling & Materials Science (CDT, UCL, UK; EPSRC reference EP/L015862/1). The CDT and A*STAR (Singapore NUS) are thanked for studentship support for Y. X. The authors thank the EPSRC for funding The JUICED Hub (Joint University Industry Consortium for Energy (Materials) and Devices Hub, EP/R023662/1). The authors also acknowledge the financial support from Research, Community Service and Innovation Program (P3MI) Institut Teknologi Bandung, grant 2020.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1039/d0ra08363a[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]