[vc_empty_space][vc_empty_space]
Determining Source Model and Aftershocks of 2006 Yogyakarta Earthquake, Indonesia using Coulomb Stress Change
Budiman R.a, Sahara D.P.a, Nugraha A.D.a
a Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IOP Publishing Ltd. All rights reserved.On 26 May 2006 at 22:53:59 UTC, an earthquake with moment magnitude of 6.4 occurred in Yogyakarta, Indonesia. The source of the event is still debatable. Some believe the event was caused by the reactivation of the Opak Fault which has a left-lateral type movement. Previous studies indicated there are two possibilities to explain the mechanism of the Yogyakarta earthquake. First is based on the focal mechanism from NIED (National Research Institute for Earth Science and Disaster) Japan which indicated that the event occurred in an oblique reverse slip. This model states that the complex Opak fault is a flower structure (strike-slip) type. Second is based on NEIC (National Earthquake Information Center) US which indicated that the event was caused by a pure strike-slip fault (active Opak fault). The May 26th earthquake triggered many aftershock events around the old Opak fault. The majority of aftershock events on 3-6 June 2006 were located around 5 km east of Opak fault. It has a trendline of N45°E and lies parallel with the Opak fault. We use Coulomb Stress change to determine which type of source model fit better the aftershocks pattern. The target fault for Coulomb Stress analysis is a left lateral pure strike slip with an orientation of N45°E/90°SE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coulomb stress changes,Flower structures,Focal mechanism,Model state,Moment magnitudes,National research institutes,Source modeling,Target faults[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/318/1/012026[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]