[vc_empty_space][vc_empty_space]
Modeling of stress transfer behavior in fiber-matrix composite under axial and transverse loadings
Budiman B.A.a, Triawan F.b, Adziman F.c, Nurprasetio I.P.a
a Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
c Department of Engineering Science, University of Oxford, Oxford, United Kingdom
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Informa UK Limited, trading as Taylor & Francis Group.Interface between fiber and matrix as a stress transfer medium determines composite performances in load-bearing structures. For instance, failures in composite are most likely initiated by an accumulation of interfacial cracks allowing little or no stress transfer from the matrix to the fiber and vice versa. This paper studies stress transfer behaviors at the interface subject to axial and transverse loadings using the finite element method. Single fiber surrounded by matrix was modeled by introducing a cohesive zone model (CZM) at the interface taking into account the bonding mechanism. By the proposed technique, plastic deformation in the matrix and exerted friction at the interface was verified to govern the role of stress transfer at the interface. Further, the influence of other fibers in matrix surrounding the model was also discussed.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bonding mechanism,Cohesive zone model,Interfacial cracks,Loadbearing structure,Most likely,Single fiber,Stress transfer,Transverse loading[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]cohesive zone model,finite element analysis,Interface,stress transfer[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/09276440.2017.1262666[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]