Enter your keyword

2-s2.0-84989854728

[vc_empty_space][vc_empty_space]

Clean Co-production of H2 and power from low rank coal

Aziz M.a, Juangsa F.B.a, Kurniawan W.a, Budiman B.A.b

a Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
b Department of Mechanical Engineering, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Elsevier LtdThis work proposes a state-of-the art integrated system for the co-production of H2 and power from low rank coal with high total energy efficiency. A model of this system is developed based on enhanced process integration technology, incorporating coal drying, gasification, chemical looping, power generation, and hydrogenation. In this model, heat circulation and process integration technologies are effectively combined, minimizing the exergy losses. Iron-based materials are used as oxygen carriers and are circulated in a chemical looping module consisting of three continuous processes: reduction, oxidation, and combustion. The toluene-methyl cyclohexane system is employed as a liquid organic H2 carrier to store H2 generated from coal. The effects of the fluidization velocity in drying, the steam-to-fuel ratio in gasification, and the chemical looping pressure are evaluated with regard to the power generation and H2 production efficiencies as well as the overall efficiency, and the proposed integrated system exhibits very high efficiencies of approximately 12, 72, and 84%, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical looping,Fluidization velocity,Integrated systems,Iron based materials,Low rank coals,Power,Process integration,Production efficiency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical looping,Enhanced process integration,H2 production,Hydrogenation,Low rank coal,Power[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.energy.2016.09.135[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]