[vc_empty_space][vc_empty_space]
Fractures characterization in carbonate rocks
a Institute of Technology Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Fractures can act as a major control on porosity distribution in carbonate reservoirs. In general, three different types of open fractures can be found; shear fractures, extensional fractures and stylolites. All types can be equally important in controlling porosity and permeability distribution. Detailed outcrop study of the Tertiary carbonate complex has been carried out to characterize fracture type, distribution and density. The field observations were made using the one dimensional scan-line method and the data was analyzed utilizing standard statistical methods. The results of the study show that there are fracture characteristics that are strongly dependent on carbonate facies. Based on the data analysis, both fracture spacing and length followed power law distribution. The statistical analysis show the average R2 of fracture spacing is ranging between 0.85-0.97 meaning the data showing excellent correlation coefficient. This indicates that small scale fractures form an important part of the overall porosity. However, fracture density is also clearly controlled locally by the presence of faults and folds. Secondary processes such as dissolution along stylolite surfaces due to the groundwater interaction have also played a major role in enlarging fracture apertures. © 2010, European Association of Geoscientists and Engineers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carbonate complexes,Carbonate reservoir,Correlation coefficient,Fracture characteristics,Groundwater interaction,Permeability distribution,Porosity distributions,Power law distribution[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3997/2214-4609.201400907[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]