[vc_empty_space][vc_empty_space]
Music information retrieval using Query-by-humming based on the dynamic time warping
Putri R.A.a, Lestari D.P.a
a Informatics/Computer Science, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.Query-by-humming (QBH) is a content-based music information retrieval system that use humming as its query. Naturally, human cannot hum or sing perfectly. They may sing in different pitch, key, or tempo thus can affect the retrieval performance of the system. It becomes a challenge to build an effective QBH system despite all of the query imperfection. Many approaches have been proposed to develop QBH systems, such as contour approach, hidden Markov model, and dynamic time warping. One of a simple yet promising method for building a QBH system is the Dynamic Time Warping. In this paper, we describe our works on building a QBH system using the Dynamic Time Warping to search for Indonesian songs stored in the MIDI format. To evaluate the system, we use accuracy rate for humming transcription evaluation and mean reciprocal rank for retrieval evaluation. Most of retrieval results are in the first rank thus shown that the Dynamic Time Warping is effective to be applied on this task.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dynamic time warping,Humming transcription,Music retrieval,Pitch-tracking,Query by humming[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]dynamic time warping,humming transcription,music retrieval,pitch tracking,query by humming[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2015.7352471[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]