Enter your keyword

2-s2.0-85098703781

[vc_empty_space][vc_empty_space]

Analytical And Numerical Studies For The Reduction Of Wave Run-Up Height By A Submerged Breakwater

Magdalena I.a, Suhardi J.L.E.a, Adityawan M.B.a

a Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietorsSubmerged breakwaters are designed to reduce the wave run-up in coastal areas. The effectiveness can be modelled using numerical methods. The Nonlinear Shallow Water Equation has been applied as the fundamental model. The equation has been solved analytically and numerically to obtain the run-up coefficient. The results from the analytical and numerical solutions have been combined with published experimental data to validate the analytical model and numerical scheme. It is found that both analytical and numerical results are in a very good agreement with the experimental data with relatively small errors. Furthermore, the numerical scheme has been implemented to observe the influence of the breakwater’s characteristics, such as its height and length, towards the reduction of wave run-up. From the observation, the optimum size of the breakwater is determined to reduce the wave run-up as much as possible. The results can be applied to future design of submerged breakwaters for reducing long wave run-up.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Nonlinear Shallow Water Equation,Run-up,Submerged breakwater[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.21660/2020.77.40548[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]