Enter your keyword

2-s2.0-85070673213

[vc_empty_space][vc_empty_space]

Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application

Septiani N.L.W.a, Kaneti Y.V.b,c,d, Guo Y.f, Yuliarto B.a, Jiang X.g, Ide Y.c, Nugraha N.a, Dipojono H.K.a, Yu A.f, Sugahara Y.f,g, Golberg D.c,h, Yamauchi Y.b,c,d,i

a Department of Engineering Physics and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
d School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, 4072, Australia
e Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo, 169-0051, Japan
f Faculty of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
g Department of Chemical Engineering, Monash University, Clayton, 3800, Australia
h Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000, Australia
i Department of Plant & Environmental New Resources, Kyung Hee University, Gyeonggi-do, 446-701, South Korea

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimLayered double hydroxides (LDHs) containing first-row transition metals such as Fe, Co, and Ni have attracted significant interest for electrocatalysis owing to their abundance and excellent performance for the oxygen evolution reaction (OER) in alkaline media. Herein, the assembly of holey iron-doped nickel-cobalt layered double hydroxide (NiCo-LDH) nanosheets (‘holey nanosheets’) is demonstrated by employing uniform Ni–Co glycerate spheres as self-templates. Iron doping was found to increase the rate of hydrolysis of Ni–Co glycerate spheres and induce the formation of a holey interconnected sheet-like structure with small pores (1–10 nm) and a high specific surface area (279 m2 g−1). The optimum Fe-doped NiCo-LDH OER catalyst showed a low overpotential of 285 mV at a current density of 10 mA cm−2 and a low Tafel slope of 62 mV dec−1. The enhanced OER activity was attributed to (i) the high specific surface area of the holey nanosheets, which increases the number of active sites, and (ii) the improved kinetics and enhanced ion transport arising from the iron doping and synergistic effects.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]First row transition metals,High specific surface area,Layered double hydroxide nanosheets,Layered double hydroxides,Number of active sites,Oxygen evolution reaction,Sheet-like structure,Two-dimensional materials[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]electrocatalysis,layered double hydroxide,nanosheets,oxygen evolution reaction,two-dimensional materials[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by Australian Research Council (ARC) Future Fellowship (FT150100479) and World Class Professor (WCP) program (Grant No. 123.11/D2.3/KP/2018). D.G. is grateful to the Australian Research Council (ARC) for granting a Laureate Fellowship FL160100089 and to QUT projects Nos 322170‐0355/51 and 322170‐0348/07. The authors also acknowledge financial grants provided by Institute of Technology Bandung (ITB), Indonesia and Ministry of Research, Technology, and Higher Education of Indonesia, and Lembaga Pengelola Dana Pendidikan (LPDP), Ministry of Finance of Indonesia. This work was performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano‐ and microfabrication facilities for Australia′s researchers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/cssc.201901364[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]