Enter your keyword

2-s2.0-85068755227

[vc_empty_space][vc_empty_space]

The measurement of solar differential rotation from proper motion of individual sunspots

Permata K.a, Herdiwijaya D.a

a Astronomy Department, Bandung Institute of Technology, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.The differential rotation is the result of the interaction between rotation and convection and causes dynamo circulation that affect the cycle of solar activity. Tracer method using features in the photosphere such as sunspot is a simple method to measure the differential rotation. In this study, 98 individual sunspots on January 8-22, 2013 and August 25-September 7, 2013 were used to measure the differential rotation of the Sun. The Sun’s continuum images were obtained from HMI (Helioseismic Magnetic Imager) instrument at SDO (Solar Dynamic Observatory). Coordinate and area of sunspot were measured using ImageJ software and converted to Carrington coordinates. From the measurement, we derived the differential rotation equation, the relation of velocity and area of sunspot, and the relation of sunspot’s velocity and Zurich classification. The differential rotation equation obtained in this study is ω (B) = (14.376 ± 0.04) + (0.6 ± 0.38) sin2B (°/day). For the relation between velocity and area of sunspot, we got the sidereal rotation rate of sunspots with area 100 pixels2.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Differential rotation,Helioseismic,Proper motion,Rotation rate,SIMPLE method,Solar activity,Solar dynamic,Tracer methods[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Solar Differential Rotation and Individual Sunspots[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1231/1/012019[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]