[vc_empty_space][vc_empty_space]
Identification of moon craters and solar corona during total solar eclipse on 9th March 2016
Luthfiandaria, Ekawanti N.a, Purwati F.G.a, Herdiwijaya D.a
a Astronomy Study Program, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Total Solar Eclipse (TSE) is a rare natural event in which the positions of Sun, Moon, and Earth are perfectly aligned. In the past by using this phenomenon, many researches have been done to understand characteristic of the corona. In this paper we carried out the study of TSE which crossed over Indonesia from West to East on 9th March 2016. We observed TSE which occured in Palembang (2.9883° S 104.7513° E), Indonesia. The aim of this research is to understand the effect of moon craters on the appearance of solar corona and identification of solar active regions during TSE. This research was done using Canon SX170 IS camera with ND 5 sun-filter. Although the sky was cloudy during the totality of the phase, coronal video was still taken. Camera also took solar images of partial eclipse phase. Coronal images for every frame were then extracted from the video. Image processing of coronal images was done using RegiStax and PhotoScape freewares. To study solar corona, images from Virtual Moon Atlas, Hinode XRT, and SOHO-LASCO were compared with the result of oriented coronal image. Wider and many more moon craters were found having positive correlation with the brighter effect on solar corona as shown at westward coronal streamer. Those craters are represented by Bel’kovich crater, the biggest one. We also found that only the eastward coronal streamer was correlated with active region, sunspot number 12519, from behind solar limb.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active regions,Coronal images,Natural events,Positive correlations,Solar active regions,Solar corona,Sunspot number,Total solar eclipse[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/771/1/012015[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]