Enter your keyword

2-s2.0-85022023642

[vc_empty_space][vc_empty_space]

Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications

Debataraja A.a,b, Zulhendri D.W.a, Yuliarto B.a, Nugrahaa, Hiskiac, Sunendar B.a

a Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia
b Electrical Engineering, State Polytechnic of Jakarta, Depok, Indonesia
c Research Centre for Electronics and Telecommunication, Indonesian Institute of Sciences, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Published by Elsevier Ltd.In the development of gas sensors, many material based on Metal Oxide Semiconductor is often used, one of them is Tin Oxide (SnO2). SnO2is widely used for CO gas sensor because of several advantages including long life expectancy, relatively stable, high durability, resistance to corrosive gases, and good mechanical resistance. Performance improvement of CO gas sensor has been carried out by synthesizing SnO2 by polyol technique to produce nanostructured powder followed by deposition on alumina substrate using doctor blade coating technique. In order to determine the performance of the sensor material, the sample was characterized using x-ray diffraction, scanning electron microscopy, and BETcalculation of N2 adsorption-desorption. The XRD analysis showed the tetragonal crystal phase of SnO2, and BET analysis result in 24,53 m2/g surface area. Furthermore, SEM image showed the nanorod shape of SnO2 morphology with diameter 50nm-2 μm. Sensor characterization with 30 ppm CO gas showed that the sample can work in 150oC working temperature with sensitivity of 52.84%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CO gas sensor,Doctor-blade coatings,Mechanical resistance,Metal oxide semiconductor,Nanostructured powders,Polyol technique,sensitivity,Sensor characterizations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CO gas sensor,Polyol technique,sensitivity,SnO2 nanostructure[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.proeng.2017.03.011[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]