Enter your keyword

2-s2.0-85044179478

[vc_empty_space][vc_empty_space]

Preparation of Graphene–Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing

Muchtar A.R.a, Septiani N.L.W.a, Iqbal M.a, Nuruddin A.a, Yuliarto B.a

a Advanced Functional Materials Laboratory, Engineering Physics Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018, The Minerals, Metals & Materials Society.A simple method to synthesize graphene–zinc oxide nanocomposite has been developed. A reduced graphene oxide–ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption–desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene–ZnO with 1:3 composition. It was found that the graphene–zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene–ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Desorption measurements,Energy dispersive spectrometry,Nitrogen adsorption,Operating temperature,Reduced graphene oxides,Sensor performance,Zinc oxide nanocomposites,Zinc oxide nanostructures[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]carbon monoxide,composite,gas sensor,nanostructured material,Reduced graphene oxide,zinc oxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work has been partly supported by Research Grant of Research, Technology, and Higher Education Ministry, World Class Professor Program (WCP) Research, Technology, and Higher Education Ministry and Research Grant of Research Group Institut Teknologi Bandung.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s11664-018-6213-x[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]