Enter your keyword

2-s2.0-85076368349

[vc_empty_space][vc_empty_space]

Synthesis of Zinc Oxide (ZnO) – Graphene Nanocomposite as CO Gas Sensor Application

Marguna S.a, Sulthoni M.A.a, Anshori I.a, Yuliarto B.a, Surawijaya A.a, Utari L.a

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.In this paper, Carbon Monoxide (CO) gas sensor deposited on the Alumina substrate was fabricated by synthesizing a nanocomposite of Zinc Oxide (ZnO) and Graphene as a sensing layer via the hydrothermal method. ZnO-Gr nanocomposite was varied with ratio of 1:1, 1:3, and 1:5 to obtain the optimum composition in responding to CO gas. The sensing layer was exposed by CO gas to 5 concentration variations at room temperature and 1 concentration at 2 high temperature. Morphological structure of ZnO-Gr was presented through Scanning Electron Microscopy (SEM). It was found that ZnO-Gr nanocomposite with ratio of 1:3 at room temperature generated the highest % response to CO gas sensing. Decreased resistance occurs in step of increasing temperature. The property of semiconductor changes from p to n-type above 100°C temperature to CO gas exposure.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Alumina substrates,Concentration variation,Graphene nanocomposites,Hydrothermal methods,Increasing temperatures,Morphological structures,Optimum composition,Zinc oxide (ZnO)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Gas Sensor,Graphene,Hydrothermal Method,Nanocomposite ZnO-Gr,Scanning Electron Microscopy,Zinc Oxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISESD.2019.8909412[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]