Enter your keyword

2-s2.0-85049372775

[vc_empty_space][vc_empty_space]

Integrated social media knowledge capture model in medical domain of Indonesia

Yodihartomo F.a, Satya D.P.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung (ITB), Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.The Social Media Platforms, as the one of largest part of today data traffic on the Internet, disseminate a vast volume of information, including medical information in it. Knowledge management system (KMS) approach is applied with a purpose to capture, maintain, and manage tacit or explicit knowledge available and collected within the social media platforms, organization’s database, knowledge base, or document repository. By adding Indonesian Natural Language Processing (InaNLP) and Data Mining approach, our research proposed a model which is theoretically designed to improve the previous research related to social media knowledge capture model and enhance its accuracy and reliability of knowledge retrieved compared to previous knowledge capture model. Despite the proposed framework is still a theoretical model, it can be applied in medical sector of Indonesia as a big picture of medical knowledge capture model. This model mainly aimed for medical practitioner to give a quick suggestion of the diseases regarding to the early diagnose which has been taken in the first place.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Document repositories,Knowledge capture,Knowledge management system,Medical information,Medical knowledge,Medical practitioner,Social media platforms,Theoretical modeling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Data Mining,Knowledge Capture,Knowledge Management System,Machine Learning,Medical Knowledge,Natural Language Processing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/SIET.2017.8304168[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]