[vc_empty_space][vc_empty_space]
Long term orbital dynamics of a retrograde Centaur 2006 RJ2
Pangestu A.D.a,b, Dermawan B.a
a Master Program in Astronomy, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b National Institute of Aeronautics and Space, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Published under licence by IOP Publishing Ltd.Centaurs are small bodies whose semi-major axes are located between Jupiter and Neptune. They have chaotic orbits and may be in orbital resonances with giant planets. An orbital resonance occurs when a simple commensurability presents between some fundamental frequencies of orbital elements. One of the resonance states is 1:1 (mean motion) resonance or co-orbital with the respected planet. This resonance can also occur in high inclination Centaurs. This study describes the results of long term orbital integration of a retrograde Centaur 2006 RJ2 (inclination of 165°) for 200,000 years. Resonance state of 2006 RJ2 was examined using the FAIR (Fast Identification of Mean Motion Resonance) method for 243 orbital clones with automation by developing Python codes. We report that 2006 RJ2 may be in retrograde 1:1 resonance with Saturn for about 160,000 years in the future. However, the clones exhibit chaotic orbits and show many temporally unstable resonances. Since the quality of its orbital elements is not quite precise, 2006 RJ2 shows a low possibility in the state of long retrograde 1:1 resonance with Saturn.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]1 : 1 resonances,Chaotic orbits,Fundamental frequencies,Mean motion resonances,Orbital dynamics,Orbital element,Orbital resonances,Resonance state[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]centaurs,co-orbital,FAIR method automation,retrograde-polar resonance,temporally resonance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We express our gratitude to the Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung and National Institute of Aeronautics and Space, Indonesia for the support of this work and also to the reviewer for the helpful comments.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1523/1/012015[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]