[vc_empty_space][vc_empty_space]
Possibility of C/2002 CE10 in state of retrograde-polar resonance with Saturn in the future
Pangestu A.D.a, Dermawan B.a
a Graduate Program in Astronomy, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Many objects in the Solar System which are associated or in resonance state with the giant planets have low orbital inclination. The effect of resonance that occurs on high-inclination objects is not well-known. This study describes results of numerical studies in term of orbital evolution of a high inclination Halley-Type Comet C/2002 CE10 (LINEAR). The ephemeris data was taken from JPL Small Body Database (https://ssd.jpl.nasa.gov/sbdb-query.cgix) at the epoch of MJD 58200. We report that C/2002 CE10 (LINEAR), whose inclination is 145°, will be in a retrograde 1:-1 (co-orbital – trisectrix type) resonance with Saturn for about 600 thousand years in the future. This resonance state is examined using the method FAIR (Fast Identification of Mean Motion Resonance). C/2002 CE10 (LINEAR) exhibits chaotic orbits and may not be stable in the resonance state. While data quality of the provided orbital elements is not quite good, orbital evolutions of clones of C/2002 CE10 (LINEAR) show small possibility that the object will be in the resonance state (retrograde co-orbital) with Saturn in the future.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chaotic orbits,Giant planets,Mean motion resonances,Orbital element,Orbital evolutions,Orbital inclination,Resonance state,Small bodies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We express our sincere grateful to Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology for the support of this work. The authors also thank the reviewer for their comments.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1245/1/012023[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]