[vc_empty_space][vc_empty_space]
The motion near L4 equilibrium point under non-point mass primaries
Huda I.N.a, Dermawan B.a, Hidayat T.a, Utama J.A.a, Madley D.a, Wibowo R.W.a, Tampubolon I.a
a Department of Astronomy, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 AIP Publishing LLC.The Circular Restricted Three-Body Problem (CRTBP) possesses five equilibrium points, that comprise three collinear (L1, L2, and L3) and two triangular points (L4 and L5). The classical study (with the primaries are point mass) suggests that the equilibrium points may cause the velocity of infinitesimal object relatively becomes zero and reveals the zero velocity curve. We study the motion of infinitesimal object near triangular equilibrium point (L4) and determine its zero velocity curve. We extend the study by taking into account the effects of radiation of the bigger primary (q1 ≠ 1, q2 = 1) and oblateness of the smaller primary (A1 = 0, A2 ≠ 0). The location of L4 is analytically derived then the stability of L4 and its zero velocity curves are studied numerically. Our study suggests that the oblateness and the radiation of primaries may affect the stability and zero velocity curve around L4.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4930676[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]