Enter your keyword

2-s2.0-0043286150

[vc_empty_space][vc_empty_space]

Doping and field effects on the lowest Kramers doublet splitting in La 1.6-xNd0.4SrxCuO4-δ single crystal

Sutjahja I.M.b, Aarts J., Nugroho A.A.b, Diantoro M.b, Tjia M.O.b, Menovsky A.A., Franse J.J.M.

a Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Netherlands
b Department of Physics, Institut Teknologi Bandung, Indonesia
c Department of Physics, Kamerlingh Onnes Laboratory, Leiden University, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We report the results of field-dependent specific-heat measurements on La1.6-xNd0.4SrxCuO4 (x = 0, 0.1, 0.2) single crystals grown by the travelling-solvent floating-zone method. Values for the electronic energy splitting (Δ) of the lowest Kramers doublet of Nd3+ are deduced from these data by taking into account the lattice and electronic contributions and including the two-level Schottky function. The exchange-interaction-induced splitting of the lowest Kramers doublet of the Nd3+ ions observed previously in the absence of an external magnetic field is reconfirmed in this experiment. This value of Δ is found to decrease with increasing Sr content (x). Further, an increase of Δ is shown to occur upon application of an external magnetic field aligned along the crystal c-axis. The analysis of these field-dependent data yields for the g-factor in the field direction the values g ⊥ = 4.31 and 4.88 for x = 0 and x = 0.1 respectively. © 2003 Elsevier B.V. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Kramers doublet splitting[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Exchange and Zeeman interactions,Kramers doublet,La1.6-xNd0.4SrxCuO4 single crystal,Specific-heat measurement[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We are grateful to S. Ramakrishnan for fruitful discussions, as well as D. Tomuta and G.J.C. van Baarle for the specific-heat measurements. This work was carried out under the cooperation between Van der Waals-Zeeman Institute (FOM-ALMOS) and the Department of Physics, ITB.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/S0921-4534(03)01078-5[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]