Enter your keyword

2-s2.0-85086501200

[vc_empty_space][vc_empty_space]

Heating Effects on Optical Properties of Metal Nano Particle

Iskandar A.A.a, Isro S.D.a, Wulandari P.a

a Physics of Magnetism and Photonics Research Division, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Published under licence by IOP Publishing Ltd.Localized Surface Plasmon (LSPR) occurs on the interface of Metal Nano Particle (MNP) when illuminated with electromagnetic wave, at a specific electromagnetic energy (wavelength). In this work, we model the gold nanoparticle (AuNP) composite by its atomic polarizability, that is related to the absorption, and its dependence on temperature. To compare the resulted LSPR frequency shift when the AuNP system is heated, we synthesized the MNP composite of polymer (oleylamine) capped gold nanoparticle (AuOA) and measured the optical properties which is related to the LSPR resonance frequency through the atomic polarizability of the composite. The temperature dependence effect is observed by depositing the AuAO onto a thin film after mixing with a polymer solvent (P3HT : PCBM) and heating it. It is found that a perceptible blueshift of the LSPR signal is observed which is contrary to the prediction from the model. This effect can be attributed to the thermal expansion of the thin films due to the heating process. After heating, the relative distance between two nanoparticles becomes larger, thus the weakening of surface plasmon interaction between the particles.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Atomic polarizability,Frequency shift,Heating process,Localized surface plasmon,Polymer-solvents,Relative distances,Resonance frequencies,Temperature dependence[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was partially supported by Program Penelitian KK 2019 from Institut Teknologi Bandung (contract no. 91t/I1.C01/PL/2019)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1552/1/012003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]