Enter your keyword

2-s2.0-85043244451

[vc_empty_space][vc_empty_space]

Evidence for magnetic weyl fermions in a correlated metal

Kuroda K.a, Tomita T.a,b, Suzuki M.-T.b,c, Bareille C.a, Nugroho A.A.a,d, Goswami P.e, Ochi M.g, Ikhlas M.a,b, Nakayama M.a, Akebi S.a, Noguchi R.a, Ishii R.a, Inami N., Ono K., Kumigashira H., Varykhalov A.i, Muro T.j, Koretsune T.b,c, Arita R.b,c, Shin S.a, Kondo T.a, Nakatsuji S.a,b

a Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
b CREST, Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
c RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
d Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
e Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, 20742- 4111, United States
f Department of Physics and Astronomy, Evanston, 60208, United States
g Department of Physics, Osaka University, Toyonaka, 560-0043, Japan
h Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
i Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Berlin, 12489, Germany
j Japan Synchrotron Radiation Research Institute (JASRI), Sayo, 679-5198, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.Weyl fermions1–3 have been observed as three-dimensional, gapless topological excitations inweakly correlated, inversionsymmetry- breaking semimetals4,5. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical2,6,7. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature8. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions—namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution ofWeyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magneticWeyl excitations of strongly correlated electron systems such as Mn3Sn.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Angle resolved photoemission spectroscopy,Electric and magnetic fields,Magneto-transport measurement,Positive magnetoconductance,Strongly correlated electron system,Strongly correlated materials,Time reversal symmetries,Topological excitations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by CREST (JPMJCR15Q5), Japan Science and Technology Agency, Grants-in-Aid for Scientific Research (Grant Nos. 16H02209, 25707030), by Grants-in-Aid for Scientific Research on Innovative Areas ‘J-Physics’ (Grant Nos. 15H05882 and 15H05883), and ‘Topological Materials Science’ (Grant No. 16H00979), and Grants-in-Aid for Young Scientists A (Grants No. 16H06013) and B (Grants No. 17K14319), and Grant-in-Aid for Exploratory Research (Grants No. 16K13829), and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (Grant No. R2604) from the Japanese Society for the Promotion of Science, and Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. P.G. was supported by JQI-NSF-PFC and LPS-MPO-CMTC. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, The University of Tokyo, is gratefully acknowledged.We thank S. Kunisada, M. Sakano and E. Golias for technical supports to perform ARPES measurements. The soft X-ray synchrotron radiation experiments were performed with the approval of JASRI (Proposal Nos. 2015B2002, 2016A1296, 2016B1262). The vacuum ultraviolet experiments were performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2016G622).We thank Helmholtz-Zentrum Berlin (HZB) for the allocation of synchrotron radiation beam time.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1038/NMAT4987[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]