Enter your keyword

2-s2.0-85095931944

[vc_empty_space][vc_empty_space]

Identification before-after forest fire and prediction of mangrove forest based on Markov-cellular automata in part of Sembilang national park, Banyuasin, south Sumatra, Indonesia

Darmawan S.a,b, Sari D.K.a, Wikantika K.b, Tridawati A.c, Hernawati R.a, Sedu M.K.a

a Department of Geodesy Engineering, Faculty of Civil Engineering and Planning, Institut Teknologi Nasional Bandung, Bandung, 40124, Indonesia
b Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia
c Department of Geodesy Engineering, Faculty of Engineering, Universitas Lampung, Bandar Lampung, 35141, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 by the authors.In 1997, the worst forest fire in Indonesia occurred and hit mangrove forest areas including in Sembilang National Park Banyuasin Regency, South Sumatra. Therefore, the Indonesian government keeps in trying to rehabilitate the mangrove forest in Sembilang National Park. This study aimed to identify the mangrove forest changing and to predict on the future year. The situations before and after forest fire were analyzed. This study applied an integrated Markov Chain and Cellular Automata model to identify mangrove forest change in the interval years of 1989–2015 and predict it in 2028. Remote sensing technology is used based on Landsat satellite imagery (1989, 1998, 2002, and 2015). The results showed mangrove forest has decreased around 9.6% from 1989 to 1998 due to forest fire, and has increased by 8.4% between 1998 and 2002, and 2.3% in 2002–2015. Other results show that mangroves area has continued to increase from 2015 to 2028 by 27.4% to 31% (7974.8 ha). It shows that the mangrove ecosystem is periodically changing due to good management by the Indonesian government.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cellular automata modeling,Forest fires,Landsat satellite,Mangrove ecosystems,Mangrove forest,National parks,Remote sensing technology,Sumatra , Indonesia[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cellular automata,Mangrove,Markov chain[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘Funding: This research was funded by Ministry of Research and Technology/National Agency for Research and Innovation (Kemenristek/BRIN), Number: 378/B.05/LPPM-Itenas/IV/2020.’}, {‘$’: ‘Acknowledgments: In addition, the researcher would like to acknowledge the funding support from Ministry of Research and Technology/National Agency for Research and Innovation (Kemenristek/BRIN) and LPPM Itenas Bandung.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3390/rs12223700[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]