[vc_empty_space][vc_empty_space]
Robust MIMO H∞ integral-backstepping PID controller for hovering control of unmanned model helicopter
Pradana W.A.a, Joelianto E.a, Budiyono A.b, Adiprawita W.a
a Dept. of Engineering Physics, Institut Teknologi Bandung, Indonesia
b Smart Robot Center, Dept. of Aerospace Information Engineering, Konkuk Univ., South Korea
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The problem of stabilization of a model helicopter in a hover configuration subject to parametric uncertainty and external disturbances is addressed. Multiinput multioutput (MIMO) proportional-integral-derivative (PID) control law is reformulated into a full-state feedback control law to synthesize the controller by using robust H∞ control theory. In full-state feedback representation, PID control has implicit integral-backstepping structure. Therefore a new parameter, p, can be introduced that acts on the derivative of the control signal. The parameters of MIMO PID controller are then obtained with solving the algebraic Riccati equation with selecting the values of and . Model helicopter simulation is carried out to verify the performance of the proposed controller to stabilize the uncertain helicopter model and to suppress external disturbances. © 2011 American Society of Civil Engineers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Algebraic Riccati equations,Control signal,External disturbances,Full-state feedbacks,Helicopter model,Model helicopters,Multi-input multi-output,New parameters,Parametric uncertainties,PID controllers,Proportional integral derivative control,Robust H[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Algebraic Riccati equation,H synthesis,MIMO integral-backstepping,PID controller[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1061/(ASCE)AS.1943-5525.0000074[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]