Enter your keyword

2-s2.0-85097025008

[vc_empty_space][vc_empty_space]

Application of PI/PID Control for Virtual Inertia Synthesis

Kerdphol T.a, Rahman F.S.b, Watanabe M.a, Mitani Y.a

a Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2021, Springer Nature Switzerland AG.In the previous chapters, to deal with the disturbances including high integration of distributed generators (DGs)/renewable energy sources (RESs), the virtual inertia constant, which is the crucial factor in emulating additional inertia power into the system, is fixed at one value. In the application of virtual inertia control, improper selection of its control value may result in a higher frequency deviation, slower recovery time, and instability. To overcome this problem, in this chapter, the basic proportional-integral (PI) or proportional-integral-derivative (PID) controllers, which are widely used in the real-practice in the industrial systems, are applied to the virtual inertia control to generate proper virtual inertia constant for imitating the effective inertia power and improving system frequency stability. This chapter provides the synthesis of a new decentralized PI/PID-based virtual inertia control to evaluate the virtual inertia power under different levels of RESs/DGs penetration and load disturbances. The uses of the PI/PID controllers for frequency stability enhancement are briefly discussed. Then, the optimal setting of PI/PID parameters using the classical and modern tuning techniques are described in detail to obtain the sufficient virtual inertia constant with respect to the additional power, assuring stable grid operation. Finally, the proposed method is tested in a control area power system with different levels of RESs/DGs, loads, and system inertia and damping reduction.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dynamic control,Frequency control,Inertia control,Internal-Model-Control (IMC),Parameter tuning,PI/PID control,Virtual inertia constant,Virtual inertia synthesis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-030-57961-6_5[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]