Enter your keyword

2-s2.0-84991508452

[vc_empty_space][vc_empty_space]

Efficiency enhancement of TiO2 (active material) solar cell by inserting copper particles grown with pulse voltage electroplating method

Rokhmat M.a, Sutisnaa, Wibowo E.a, Khairurrijala, Abdullah M.a

a Department of Physics, Bandung Institute of Technology, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Elsevier LtdHere, we report the manufacture of a solar cell using TiO2 nanoparticles as photon absorbers and copper bridges inserted between the TiO2 particles. The copper bridges were synthesized by the pulse voltage electroplating method, and the effect of the pulse duty cycle was explored. The amount of copper deposited between TiO2 particles can be controlled by varying the duty cycles and the deposition time. We found that the cell fabricated by the deposition of copper at duty cycles of 60% and a deposition time of 30 s exhibited the highest efficiency (2.21%). Efficiency was improved to 3.5% following the post-treatment of the cell with NaOH. We also proposed a simple mathematical model to explain the dependence of the efficiency on the amount of copper. Efficiencies of more than 3% for solar cells made by a simple method and using inexpensive materials make these solar cells promising competition for the current commercial solar cells.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active material,Copper particles,Deposition time,Efficiency enhancement,Photon absorbers,Post treatment,Pulse duty cycle,Pulse voltage[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Copper particles,Pulse voltage electroplating,Solar cell,Spray,TiO2[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by Hibah Unggulan Perguruan Tinggi 2015 from Ministry of Research and Higher Education, Republik of Indonesia No. 310y/I1.C01/PL/2015 .[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.jpcs.2016.09.019[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]