[vc_empty_space][vc_empty_space]
Numerical simulation of acoustic equation using radial point interpolation method with discontinuous galerkin time integration
Kresno W.S.a, Wardani S.P.R.a, Susila E.b, Pranowoc
a Department of Civil Engineering, Diponegoro University, Indonesia
b Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Indonesia
c Department of Informatics, Atmajaya University, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 by authors, all rights reserved.The Numerical methods are research and industrial strategies commonly used by the finite difference method (FDM), finite element method (FEM) and finite volume method (FVM). The technique is a mesh based or formation of the domain. Owing to the complicated and time-consuming nature of the mesh method in the complex domain, it encounters numerous inconsistencies. One way of eluding this is by the use of a meshless method. This technique eliminates the use of but rather makes use of nodes in the distribution of its domain. This paper introduces the use of the radial point interpolation method (RPIM) to approximate the acoustic equations using the discontinuous Galerkin method (DGM) time integration. In order to determine the numerical behaviour, its results were simulated with the exact solution. The DGM time integration and order of accuracy is also compared with some commonly used procedures, such as the backward Euler and trapezoid methods. The size of support domain responsible for the numerical accuracy is also examined. Finally a comparison of numerical simulations of the exact results obtained during a specific time snapshot is displayed.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Discontinuous galerkin method,Meshless,Numerical method,Radial point interpolation method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.13189/cea.2020.080524[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]